XHTML and CSS Introduction Week 5

Review: The Box Model

The “box model” is the combined structure of width/height, padding, border, and margin of any element. Most of the time the primary focus of this box model is a <div> element, although this model applies to just about everything on the page. In a properly rendered page, the width/height defines the content area. The dimensions of the padding, border, and margin are ADDITIONAL. So a box with 100 pixels of width, 5 pixels of padding on each side, a 2 pixel border all the way around, and 10 pixels of margin on each side will actually consume 134 pixels of space (100+5+5+2+2+10+10).

[image: image3.png]

Get Control of the Positioning Environment

Each positioned <div> creates it’s own coordinate system. Objects will either flow with relative position or move with absolute position irrespective of what is set outside the <div>.

Why does this matter? When building a page, it’s far too complex if not impossible to position each an every element absolutely or relative to each and every other element. It’s much more practical to design in small groups. Design the contents of each <div> independently if possible.

Floats

[image: image1]What is a float? Visually, the image displayed to the immediate right is a float. Floating takes the element out of the normal document flow and displays it either to the right or left of the flow. If the space is constrained, then the floated object will force the regular document flow to reduce in size. In short: the other elements will wrap and flow around the floated object.

Floated objects still possess all their margins, borders, padding, and widths. Z-index also applies.

In theory, floating an element takes it outside the document flow. What this means is that as far as the browser is concerned, for the purposes of vertical spacing, the height of the floated object is zero. This matters when the height of a <div> is automatic.

ClearFix

Why does it matter if a float is considered “outside the document flow”? When a div is allowed to adjust height automatically, that div relies on the document flow to determine height. If the floated object is larger than the document flow, then the containing div will be smaller than the floated object and we will see the structure below occur on most browsers.

[image: image2]
The solution is to use a “clearfix”. A clearfix is a piece of code that causes the containing div to expand so that it envelopes all the floated elements. There are a wide variety of clearfixes available on the internet, all with different advantages and disadvantages. The one included with this document has been tested with FireFox, Internet Explorer, and Safari.

On the containing div, add a new selector in the CSS file with the :after pseudoelement. Use the code in the box to the right to apply a clearfix. To correct the structure above, apply this code to the class shown in blue.

Review: Z-Index

Z-index is basically the layer order of the elements. It only applies to elements that have a position selector (it doesn’t matter which position type is selected – there just has to be one). The higher the number, the higher the element is in the stack.

Isolate and Contain: Object Oriented Design

Simple pages can be designed as a whole, each element positioned relatively or absolutely as required. However, as pages get more complex and numerous, a different thought process will be more effective: object oriented design (OOD).

Derived in spirit from Object Oriented Programming (OOP), OOD, enables the page to be designed in parts and then each part reused as required. This method of design frontloads the planning and complexity. More time must be spent planning out the entire site and more care must be taken with each piece. The benefit is that well, designed code can be reusable.

What constitutes and object?

In this context, an object is a self-contained set of code that is independent of the code around it. Usually this is a div that contains one or more page elements.

Principle 1: Objects must be fully encapsulated (contained)

The CSS and HTML elements must be contained in within the object – no CSS should affect ANYTHING outside of the object. Objects that are larger than the outer container should be clipped so that nothing strays beyond the borders of the container.

Principle 2: Standardize Parts and Sizes

Create standards within a site or across a group of sites. For example: standardizing all pages as having a width of 780px will enable these pages to share parts, which can dramatically reduce design and coding time. Try to create standard substructures (make your navigation objects have the same outer dimensions, that way you can swap items in and out quickly).

Advantages

· Speed – pages can be rapidly coded and new pages can reuse parts of older pages

· Quality – by spending extra effort on designing parts of pages, quality can be increased – one part can be tested completely then implemented across many pages

Disadvantages

· Design Flexibility – Pages often resemble a grid-style system, custom sizes of objects may look strange

· New Code Speed – In theory, a page can be ‘hacked’ together very quickly and then launched. Coding with OOD preempts this ability (although a page that is ‘hacked’ together may fail on some browsers and may be impossible to update in a timely way)

Limits

Elements cannot extend beyond their containing object – this is both and advantage and disadvantage depending on the situation. It can make the page more error resistant and if an improper element is loaded into an object that is too small, a fully encapsulated design will limit the errors to one object instead of the whole page.

Hands-On Exercises

Exercise One: Floats

1. Open the Week 5 Exercise One folder

2. Preview the finished html in a web browser

3. Open the reference.txt and the two start files into a text editor

4. Do Not edit the HTML

5. Apply css and (including the clearfix hack) where needed to create the page.

Specifications - Colors:

backgrounds:

body

rgb(60, 20, 20)

primary_container

rgb(30, 30, 30)

columns

rgb(255, 255, 255)

borders

primary_container

white

primary_container h1

white

columns

black

normal_images

black

Specifications - TOTAL Widths

primary_container

780px

floaty columns

Specifications - Content Width

floaty_column

360px

Specifications - Margins

primary_container h1

top:

6px

right:

6px

bottom:

10px

left:

6px

Specifications - Padding

primary_container h1

4px

Exercise Two: Isolate and Contain

1. Open the Week 5 Exercise Two folder

2. Preview the finished html in a web browser

3. Do Not edit the HTML

4. Adding only CSS, make the start page look like the final product

Hint 1: most of the measurements for the first and third box are 5px

Hint 2: one of the measurements for the middle box is 50%
Margin

Content

Padding

Border

Text positioned relatively inside the document flow.

class_or_id_name:after {

	content: ".";

 	display: block;

 	height: 0;

 	 clear: both;

 	 visibility: hidden;

	}

